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ABSTRACT

Expected utility theory and conjoint measurement theory form

two major classes of models and assessment procedures to construct

multi-attribute utility functions. In conjoint measurement theory

a value function v is constructed which preserves preferences

among riskless multi-attributed outcomes. The risky utility func-

tion u, constructed in the framework of expected utility theory,

also preserves such riskless preferences. In addition, u is an ap-

propriat guide for decisions under uncertainty since its expecta-

tion preserves risky preferences among gambles. Since both u and

v are order preserving functions, they must be related by a strictly

increasing transformation. However, u and v need not coincide or

be related through any special functional forms, unless some simple

-decomposition forms are assumed. More restricted functional rela-

tionships obtain, if u and v are assumed to be either additive or

multiplicative. In particular, u can be shown to be linearily,

logarithmically, or exponentially related to v, depending on which

function is additive and which is multiplicative. The paper proves

such functional relationships based4 on the theory of functional e-

quations, and techniques are described to assess the parameters of

these functions. The results are discussed from a behavioral stand-

point of interpretating the form and shape of multi-attribute utility

functions and from a practical standpoint of simplifying multi-attri-

bute utility assessment.
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INTRODUCTION

Multiattribute preferences can be modeled in two fundamentally

different ways, depending on whether the decision problem involves

uncertainties or not. The first modeling approach is based on con-

joint measurement theory (see Krantz, Luce, Suppes, and Tversky,

1971) which applies to the problem of modeling riskless preferences

for muiltiattributed outcomes. Conjoint measurement theory specifies

the conditions under which a riskless value function v can be con-

structed which preserves the preference order among multiattributed

outcomes and which can be expressed as a simple aggregate of single

attribute value functions vi. The best known conjoint measurement

model forms are the additive and the multiplicative models:

n
v(x) Z t v.(x.) (i)

and

n
v(x) v.(x.), (2)

i=1l

where x £ X is a multiattribute outcome, xi is the level of x in the
"

i-th attribute Xi vi is the i-th single attribute value function,

and v is the overall value function. Other simple polynomial forms

of v have been developed in Krantz and Tversky (1970) and Krantz et al

(1971). Although v is an appropriate guide for preferences among sure

things, nothing in conjoint measurement theory guarantees that the ex-

pectation of v is appropriate for selecting among gambles with multi-

attributed outcomes.
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The second modeling approach, expected utility theory, expli-

citly addresses the problem of decision making under risk. Based on

v. Neuamnn and Morgenstern's (1947) work which was later extended

by Savage (1954) and others, this theory provides the rationale for

constructing a utility fumction u which preserves the preferences

for riskless outcomes and at the same time its expectation preserves

the preferences among gambles for such outcomes. Applied to the multi-

attribute situation, several decomposition forms of u have been deve-

loped (see Keeney and Raiffa, 1976). The additive and the multipli-

cative forms are the best known:

n
u(x) - ui(xi), (3)

n
l+ku(x) n [l+ku.(x)). (4)

i-l

It is relatively trivial to establish the fact that u and v are

related by a strictly increasing transformation (see Raiffa, 1969;

Krantz et al, 1971; Keeney and Raiffa, 1976). But neither conjoint

measurement theory, nor expected utility theory by themselves provide

a rationale for any specific functional relationships between u and

v. In principle, the shape and aggregation rule of u and v can be

quite different. For example, v may be additive, while u is multi-

plicative or non-decomposable at all. All vi s may be linear, while

all ui 's may be non-linear, etc.

Establishing closed form functional relationships between u and

v is, however, possible when special decomposition forms such as (1) -

(4) are assumed. Scattered throughout the multiattribute literature
N
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are results which relate utility and value functions by some specific

class of transformation, e.g., exponential or logarithmic functions

(see Pollak, 1967; Krantz et al, 1971; Keeney and Raiffa, 1976; Dyer

and Sarin, 1977). Keeney and Raiffa, for example, give a proof out-

line to show that an additive value function v and a multiplicative

utility function u must be related exponentially:

u(x) - b exp{a v(x)1. (5)

Another way to relate u and v is by the uniqueness theorems of their

respective measurement theoretic representations. For example, an

additive conjoint measurement function v is unique up to a positive

linear transformation. Consequently, any other additive and order

preserving function v' must be related to v by

v' (x) - a-v(x) + b. (6)

for some a > O,b. In particular, an additive utility function u

should be related to an additive value function by a positive linear

transformation.

Functional forms such as (5) and (6) have been proven by a

variety of mathematical methods (differentiation methods in Pollak,

constructive algebraic proofs in Krantz et al, risk attitude argu-

ments in Keeney and Raiffa, and uniqueness theorems in Dyer and Sain).

No common framework or integrated presentation of these functional rel-

ations has been developed vet. This paper attempts to provide such an

integrative framework through the theor" of functional equations.

.. ,'h
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The interest in parametric functional relationships such as

(5) and (6) is not merely theoretical. For the practitioner who has

to assess multiattribute utility functions in an applied context

such functional forms provide tools for simplifying and cross-checking

utility and value functions. Simplifications in the construction of

u are possible, by first constructing v and then exploring the func-

tional form relating u and v through its parametric properties. Such

a two step construction process has several advantages. First, v can

usually be approximated by simple techniques such as Edwards' SMART

procedure (1977), which involves similar judgmental processes as the

theoretically feasible construction process of dual standard

sequences (see Krantz et al, 1971). Second, the two step

procedure avoids lengthy and tedious lottery assessments in the con-

struction of u by assessing the parameters of the function u - h(v)

through a few simple questions involving risky outcomes.

Constructing the utility function u in the two step process has

also theoretical advantages. The value function v and its single attri-

bute functions vi express purely riskless preference characteristics,

such as marginally decreasing value, complementarity or substitution

phenomena between attributes. Such considerations are usually compoun-

ded in u and its single attribute functions ui with the risk attitudes

of the decision maker. For example, it is quite conceivable that a

single attribute utility function ui appears risk neutral (linear) be-

cause marginal decreasing value is compensated by risk proneness. The

two step construction process uncovers such anomalies by identifying

riskless value aspects in the value function, and by incorporating

|*



"pure" risk considerations in the transformation u = h(v).

The next section will show that u and v must be related by

a strictly increasing transformation h, which under further tech-

nical assumptions must be continuous. Then four possible functional

equations will be investigated and solved.

n n
u = h z vh] = h(v) (7)

i=1 i=l

n n
1+ku = (+ku) = h [ z v.] = h(v) (8)

i=l i1 1

n nU = E u. h n v.] = h(v), (9)
i=l 1 i=l v

n n
lku = n (1+ku.) = h [ IT vi] = h(v). (10)i=l i-I

The solutions consist of a reduction to one of the fundamental Cauchy

type functional equations (see Aczdl, 1966). For certain standardiza-

tions of u and v these solutions turn out to be very simple, namely

u = v for (7), 1+ku = (1+k)v for (8), u=ln v for (9) and

1 + ku = (sgnk)(sgnv)lvlln + (sgnk)'k ] for (10). Subsequent to proving

these solutions, some behavioral and practical implications will be

discussed.

Readers who are willing to accept the above solutions and do not
want to bother with the rather technical proofs, are recommended to
skip the following two sections.

-P -k
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Definitions and Preliminary Results

The value and utility functions v and u will be defined on the

product set X X 1 x X2 x ... x Xi x ... x Xn. x and y are typical

elements of X. xi and yi characterize their respective levels in

attribute X1. P is the set of simple probability distributions over

X with typical elements p, q E P. A transitive and connected order

relation >is defined on P with p~,q being interpreted as "p is pre-

ferred to or indifferent to q." By considering degenerate probability

distributions can be reduced to X. Thus p > q where p(x) = q(y) = 1

for some x, yeX is written as x>y, and interpreted as "x is pre-

ferred to or indifferent to y." u and v are defined as follows (for

more details, see Fishburn, 1970):

Definition I A function u: X Re is a (v. Neumann and Morgenstern)

utility function if for all p,qcP

p >q

if and only if (11)

E(uIp) >E(uIq)

where E(u I.) denotes the expectation of u with respect to some

probability distribution. If u can be expressed as in (3) it is

called additive. If u can be expressed as in (4) it is called

multiplicative. I
Note: From Definition 1 and the reduction of >to X it follows that u

is order preserving, i.e., for all x,ye X
x.11x > y :

if and only if (12)

u(x) > .u(y)

'II
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Definition 2 A function v: X * Re is a (conjoint measurement) value

function, if for all x,ye X

x~y

if and only if (13)

v(x) >v(y).

If v can be expressed as in (1) it is called additive.

If v can be expressed as in (2), it is called multiDlicative.

The axioms and representation theorems leading to definitions 1 and 2

are of no special interest here. Axiomatic foundations of utility

functions can be found in v. Neumanm and Morgenstern (1947), Savage

(1954), and Fishburn (1970). Axioms for the additive and imltipl"cative

decomposition forms of u are presented in Keeney and Raiffa (1976) and

Fishburn (1970). Axiomatic foundations of conjoint measurement value

functions are given in Krantz et al (1971), including the additive and

the multiplicative forms as well as other simple polynomials.

Besides the assumptions implicit in definitions 1 and 2, the solu-

tions to the functional equations (7)-(10) require that h be continuous.

Since continuity is a rather abstract concept, the more natural assump-

tion will be made in the following that u and v are defined onto some

convex subset of Re, labelled Iu and Iv respectively. From the defini-

tions of u and v and from this onto property it follows that h must be

strictly increasing and continuous. Lenma 1 formalizes this implication.
onto

Lemma I Assume that u: X - I is a atility function, where I is a
u onto

convex subset of Re. Assume further that v: X - I is a valuev

function where I is a convex subset of Re. Then there exists a
oxto

function h: Iv  I which is strictly increasing and continuous.

Proof. The proof is trivial except for continuity. Define h

: %v :o k, ','.''.;?:,->'>:-,'. ,-'--v-"-" v-''- '-:"=, , ,. -.... .:, .,:..:-...:..i...-; , , . , L.':.--:. ->'-'-,'--._ '.- :.?.":'-:'i-;-," -_- :-' -,.
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by u(x) - h [v(x)] for all xc X. From the equality part of (12) and

(13) it follows that h is well defined. From the inequality part of

(12) and (13) it follows that h is strictly increasing. h is onto

since both u and v are onto.

To prove continuity, consider the contrary. Then there exists

at least one point r I v at which h is discontinuous. By the onto

property of v and the definition of h, h(r) is defined. Consider first

the case where r is not a boundary point of Iv , and define right and

left hand limits as

lir h(t) = L
t + r" (14)

lim h(t) - R
t -o r+

By the assumption that r is not a boundary point, we can define a

sufficiently small e such that h(r+e) and h(r-e) exist. By the fact

that h is strictly increasing

h(r-e) <L <h(r) !R <h(r+e). (15)

This establishes boundaries for L and R and shows that both limits

must exist. By the assumed discontinuity at r, however, at least one

of the weak inequalities in (15) ust be strict. By the convexity of

I we therefore can find an a such that m - aR + (l-a)L # h(r); mE IU ,

However, by (15) there exists no s I v such that h(s) = m, thus con-

tradicting the onto property of h. Consequently, h must be continuous,

at r.



A similar argument can be made for the cases where r is either

a lower or an upper boundary point of Iv by only considering right

hand or left hand limits. In each of these cases the assumption that

h is discontinuous leads to a violation of the onto property of h.

Thus h must be continuous everywhere in Iv .

In solving the functional equations (7)-(10) it is often con-

venient to transform u and v. The following simple lemmas state

which transformations are admissable in the sense that they do not

"destroy" any property of a value on utility functions. These lemmas

are actually the necessary parts of the uniqueness theorems in ex-

pected utility theory and conjoint measurement theory. Since the

proofs are very simple, only proof notes are given for each lemma.

Lemma 2 If v is an additive value function with additive terms vi ,

then v' = av + b, a>0, is also an additive value function with
n

additive terms vi' = av. + bi, z b. - b.i=l 1

Proof note. Since a is positive, v' is order preserving. Also, v'

can be written as an additive function by using vi'. Therefore v' is

an additive value function.

Lemma 3 If v is a multiplicative value function with multiplicative

terms vi, then v' =(sgn v)b- Iva, a,b>0, is also a multiplicative 6

value function with multiplicative terms vi' = (sgn vi) .b i vi a,
n

where I b. = b.

Proof note. Since a and b are positive,v' is order preserving.

Also, v' can be written as a multiplicative function using terms v'.

The sign conditions make sure that v and v' have identical signs every-

where.

..I
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Lemma 4 If u is an additive utility function with additive terms ui

then u' - au + b is also an additive utility function with addi-
n

tive terms ui' = au + bi , where Z b. a b.

Proof note. Since a is positive, u' is order preserving over X. Since

E(u'I .) = a E(ul .) + b, the expectation of u' is also order preserving

over P. Finally u' can be expressed as an additive function using the

U.'5.1

Lemma 5 If k>0 and 1+ku is a multiplicative utility function with

multiplicative terms l+kui, then u' - a (1+ku), a>0 is also a

multiplicative utility function with multiplicative terms
n

ui  a.(_+kui), l a. - a. If k<0 and -(l+ku) is a multi-1 1i1 1

plicative utility function with multiplicative terms (l+kui),

then u' = -a(l+ku),a>O, is also a multiplicative utility function
n

with multiplicative terms ai(l4+kui), n ai = -a.
1=1

Proof note. The two cases k>0 and k<O must be considered separately

to choose appropriate signs of the constants. (The case k = 0 is

equivalent to u being additive; thus Lemm 3 applies.) If k>0, and u

is the original utility function, then l+ku and u' are also utility

functions since a is positive and since the expectation operator is

linear. Also, u' can be expressed multiplicatively by using the ui 'S.!1

The sign of the ai Is is arbitrary as long as their product is positive,

thus maintaining the order preserving property of u'. If k< 0, and u

is the original utility function, 1+ku produces an inverse ordering.
n

Thus -(+ku) is again a utility function of the form -(+ku) = -n (1+ku.
i=l

Since a is positive u' also is a utility function, which can be ex-

pressed multiplicatively by using ui'. The scaling of the ai 's

1 1

,i
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guarantees that the product of the single attribute ui's is again

negative.

A point worth noting here is that the multiplicative value ftmc-

tions could be transformed exponentially while still maintaining order

preserving properties and multiplicativeness. Such transformations

are not admissible for utility functions since they would destroy their

expectation property.

The Basic Functional Equations and Their Solutions

With these results as a background, functional equations (7)- (10)

will now be solved by a reduction to fundamental Cauchy type equations

with some simple solution. In the simplest case, both u and v are

additive:

Theorem 1 Assume that u and v are additive as in (1) and (3). Then

there exist real numbers a' O, b such that

u = av + b (14)

Proof. The uniqueness of u and v can be used to prove the theorem (see

Dyer and Sarin, 1977). However, uniqueness is itself a rather difficult

property to establish, and its proof is usually hidden in the construc-

tive algebraic proofs of the representation theorems leading up to the

definition of utility and value functions. This proof therefore uses

the more fundamental route of reducing (7) to Cauchy's equation h(x+y) =

h(x) + h(y).

Consider some arbitrary x0 = (x1 , x),... , x ,... X ) with

vi(xi ° ) = vi°, v(x ° ) = v° , ui(xi ° ) = uiO, and u(x ° ) = u° . Define

transformed value and utility functions by"



V., v v 0'J
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vui  v i -v ° ,  (15)
n

v' - Z v. (16)

i=l
0 (7u. = u. -u. , (7

n p

u' - E uj' .(18)
i--1

By Lemma 2 v' is an additive value function, and by Lemam 4 u' is an

additive utility function. Furthermore if v and u are defined onto

some real interval, so are v' and u'. Therefore, Lemma 1 applies and

there exists a strictly increasing continuous function h with

n n
E ui'(xi) - h[ v.'(x)" (19)

Let xj - xj° for all j i. By (15) and (17) v '(xj °) - 0 and

u.j 0)= 0, thus (19) sinplifies to

u (xi = h[v i ' (xi). (20)

Substituting the right hand side of (20) nto (19) gives

n n I
In particular, let x= x.0 for i = 3,4 ..... , n. This reduces (21) to

1o

.u
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hiv'(x1)) + h[v2 '(x 2) ] u h[v,'(xl) + v2'(x2)]. (22)

(22) is Cauchy's fundamental functional equation h(xj + h(y) = h(x + y)

(see Acztl, 1966), which for continuous h has the non-trivial solution

h(r) - ar. (23)

Substituting (23) into (20) and (19) gives

u.' (xi) = av.' (xi), (24)

n n
i u.'(xi ) - a z v' (xi ) , (25) ri~il z inli '

and ul - a v'. (25)

Resubstituting u and u for u' and v' gives the desired result

u - av +b,

where b - u°-av0 . a>O follows directly from the fact that h is

strictly increasing.

Theorem 2 Assume that (1+ku) is multiplicative as in (4) and that v

is additive as in (1). Then there exist a>O, b>O such that

l+ku - b exp {(sgn k) a v} (26)

Proof. The proof is based on a reduction of (8) to the functional

equation h(xy) - h(x) + h(y). Again, consider some arbitrary U
X0 (X1%p X x2 0 ..., X10,..., xn 0) and define v 0  and u0 , vil

and v' as in the proof of Theorem 1. Define the transformed utility

,.9)

9.

° ,
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function u' by

, 1,
ui  = O (1+ku i), (27)

n1
i u.' if k>O

in 1

v' is an additive value function (Lemma 2). To establish that u'

is a multiplicative utility function, observe that [(l+kui(xi)] > 0

for all i - 1,2,..., n and xieXi . For if there was a yi such that

l+kui(Yi) . 0, then reversals of preferences must occur or all elements

in X must be indifferent for that value of yi. (See also Fishburn and

Keeney, 1974.) -Neither case is coipatible with the additive value

function. Therefore the sign scaling conditions of Lemma 5 are valid,

and u' is a multiplicative utility function. In addition, since v and

u are defined onto some convex subset of Re, so are u' and v'. There-

fore Lemma 1 applies, and there exists a strictly increasing contin-

uous function h such that

n n
TI ui (x i ) =h[(sgn k) z v i (x.)]. (29)

i-i 1i1l 1•

(Note: (29) is the conpact form of the two functional equations

u' - h(v') for k>O and -u' - h[(-v')] for kco). Evaluating (29) at

x. 0 x.° for j i and noting that u' (x 0 ) =1 and v.'(x. 0 re-

duces (29) to
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ui t (xi = h[ (sgn k) vi ' (xi )). (30)

Substituting the right hand side of (30) into (29) gives

n n
n[h (sgn k) vi '(x i )] = h[(sgn k) z v. (xi)] (31)iwl i=l "

In particular, let x. = xi0 for i - 3,4,..., n. This reduces (31) to

h[(sgn k) vi (x)] h E(sgn k) v2 (x2)] -

fit[ (sgn k) v1 (xl ) ] + [ (sgn k) v2 (x2) )}. (32)

(32) is the fundamental functional evaluation h(xy) = h(x + y) (see

Aczel, 1961), which for continuous h has the non-trivial solution

h(r) = exp (a r). (33)

Since h is strictly increasing, a>O.

Substituting (33) into the original functional equations (29) and

(30) gives

ui'(x i ) = exp[(sgn k) a vi '(xi)], (34)

n n
and T u.'(xi) exp [(sgn k) a z v.'(x.). (35)

i=l 1  1 i=1 i

Resubstituting u~ and v. for u.' and v.' gives the desired results:
Reubtiutngu i 1n I fo 1
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1+kui(xi) - (1+kui 0 ) ex {(sgn k) a [vi(xi)-vi°]}, (36)

n n n
and T [1+ku. (xi )]= T1 (l+kui exp {(sgn k) a z Evi (xi ) -vi 0 ]),(37)

i-i i=l i=l

which, after appropriate definitions of constants becomes

1 + ku - b exp [(sgn k) a v], b, a>O. (38)

Another way of writing (38) is somewhat more instructive:

u = (sgn k) W' exp'{(sgn k) a v) + c. (39)

This form shows that k directly controls the shape of the exponential

transformation. In utility theoretic terms, if k<O then h is a con-

stantly risk averse transformation, if k> it is a constantly risk

seeking transformation. This result was previously shown by Keeney

and Raiffa, 1976, (p.331).

The next theorem reverses the roles of u and v:

Theorem 3 If u is additive as-in (3) and v is multiplicative as in (2),

then there exist a>O, b, such that

u =a ln v + b, (40)

where v>O.

Proof. The proof reduces (9) to the functional equation h(x) + h(y) =

h(xy). Consider some arbitrary x° = (xl, x2 ,...xi°,..., xn) and

define vi ° , vO , ui0, u0, ui and u' as in Theorem 1.

The transformed value function is defined by

-4



v i ' a (41)

V, " v 0_ (42)
vo

u' is an additive utility function (Leirma 4). To establish that v

and v' exist and represent a multiplicative value function, it suffices

to show that for all i, xicXi, vi(xi)>O. If there was an yi such that

vi (yi)cO, then reversals of preferences must occur among elements in

X or all elements in X must be indifferent for that value of yi. (See

also Fishburn and Keeney, 1974.) Both cases are incompatible with the

additive utility function u. Therefore (41) and (42) are positive

transformations and v' is a mltiplicative value function (Lenma 3).

Since both u and v are defined onto some convex subset of Re, so are

u' and v'. Therefore there exist a strictly increasing continuous

function h such that

n n
E ui '(x i ) = h C H v. '(xi)]. (43)
i-i10 i=l

Evaluating (43) at x. = x. ° for j # i and, noting that

u (x = 0 and v.(x. = 1, (43) can be reduced to

u.'(xi) = h[vi'(xi) ] . (44)

Substituting (44) into (43) gives

** , .~ . * - . .t

I~mS~. .P~ .
]
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n n
r h[vi ' (xi)] = h[ n v.'(xi)]. (45)

i-l i=l 1

In particular, letting xi = x 0 for i = 3,4,..., n reduces (45) to

h[vl'(xl)] + h[v2'(x 2 )] = h[Vl'(xl)v2'(x2 )]. (46)

(46) is the functional equation h(x) + h(y) = h(xy) (see Aczel, 1966)

which for continuous h and positive r has the solution

h(r) - a in r, (47)

where a>O, since h is strictly increasing.

Substituting (47) into the original functional equations (44) and

(45) gives

ui '(x i ) = a in vi'(xi), (48)

and
n n
Z u.(x) a ln[ n v '(x)]. (49)

i-l 1

Resubstituting ui and vi for ui and vi' gives the desired results:

u. = a In - + U.0  (50)
1 V-

and u =a ln v  +uo, (51)0
V

which, after appropriate definitions of constants is

u- a In v + b. (52)
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Theorem 4 If both us and v are multiplicative as in (2) and (4),

then there exist a, b>0 such that

1+ku = (sgn k) (sgn v) b via (53)

Proof. The proof consists of reducing functional equation (10) to the

fundamental equation h(xy) = h(x)h(y). Although the route will be

similar to the previous theorems, the situation here is more general

since sign reversals and null region are allowed. Again some

x (x0 , x2 ,. ., xi ,.., xn 
0 ) is picked, but this time zero

multipliers must be avoided, i.e., l+kui (xi ) # 0; vi (xi°) 0. There

is no problem with excluding zero multipliers, as long as there exist

at least one x and one y in X such that x.y. Because if in one attri-

bute the only realizable value z. was a zero multiplier, all elements

in X would be indifferent.

Let vi , v° , ui , u° be defined as in the previous theorem.

Transformed value and utility fuctions are defined as follows:

v.
--1 if v. > 0,1

v.0

v (54)

v v

-~ ifv.° <0.

n ,Iv' (55)
i=l i
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1+k u  if 1+kui° 0

1+k

u = (56)
lku i if l+kui°0 < 0.

n
ITui  if k > 0,

ul (S7)
n
1fu. ilk<0

i=1 0

The above definitions guarantee that all single attribute trans-

formations are positive, thus the sign scaling conditions of Lemmas 3

and 5 are met.. Consequently ul and v' are again proper multiplicative

value and utility functions. In addition, since u and v are defined

onto some convex subset of Re, so are u' and v'. hus Lemma I applies!

and there exists a strictly increasing continuous function h such that -

n n
Ilu.'(xi) = h[(sgn k) 1 v.'(xi) ]  (58)

- j i= 1  i (5

(Note: (58) is the compact form o the two functional equations -

ur t hvs for k>o and -u' h(-v') for k<.) Evaluating (58) at
Xj e x. for i, and noting that uion, snvce u v 1 reduces

n nx

(58) to

ui u'(xi ) = hi(sn k) v'l(xi) ' . (58)
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Substituting the right hand side of (59) into (S8) yields

n n
1I h((sgn k) v.'(x.)] - hi(sgn k) ni v'(xi)]. (60)i-l 1 1 i-l 1

In particular, let xi - xi0 for i-3,4,..., n. This reduces (60) to

h[(sgn k) v 1(x1)] h[(sgn k) v2(x2)] -

h {[(sgn k) vI(x 1)][(sgn k)v 2 (x2 )]I. (61)

(62) is the fundamental functional equation h(x)h(y) - h(xy) (see Aczel,

1966) which, for continuous h has the nontrivial solution

h(r) - (sgn r) jr a. (62)

Since h must be strictly increasing a > 0. (See Aczel, 1966.)

Substituting (62) into the original fumctional equations (58) and

(59) gives:

u.'(x i) - (sgn k)[sgn vi'(xi)]!Iv.'(x-)Ia (63)1 1 11

n n n

and T1 u.' (xi ) (sgn k)[sgn i1 v' (xi)) 1 n v' (xi) i. (64)1~ 1 i'il i-Il 1

Resubstituting ui and vi for uiI and vi gives the desired results:

V.
1+ku. = (lkui )(sgn k)(sgn -1_/_vj io-a Ivi a, (65)

1 1 V.0  1
1

. ¢ ;-, ,. : , , .., ,- x:. '. , '",;, ".'. .,.;"r':"4"" '' "> , ",'+,"">?, '' +,,''4 " ,' ', S
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n n n v. n
ri +ku. (1+ku.°)(sgn k)(sgn r - ) v .°V'a n .Ta ,  (66)

ii-I 1 i- v. i i=l i=1l i

which, after appropriate definitions of signs and constant terms gives

l+ku = (sgn k)(sgn v) b ivia (67)

where b, a > 0.

Scaling Procedures and Examples

The solutions of the functional equations presented in Theorems

1-4 are unique up to the specification of two parameters. By Lemmas

2-5, however, we can transform value and utility functions using two

free parameters. Thus it is possible to use standardization conven-

tions in the construction of u and v such that both functions go through

two arbitrary fixed points. Such conventions will "consume" the two

free parameters in the functional equations and produce special forms

of functional equations which do not depend any more on a and b.

For the case .in which both u and v are additive this is possible

by choosing elements x° , x1  Xsuch that x -X , and by defining

u(x)=(x ) = 0 and u(x ) = v(x) 1 . Solving for a and b in the

solution (14) of Theorem 1 gives the results a = 1 and b = 0; therefore

u = v. (68)

In other words, if u and v are standardized a priori to assune values

zero and one at identical points in X, they must be identical evervwhere.
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Using the same standardizations in the case where u is multi-

plicative and v is additive gives the solutions b - 1 and

a - (sgn k) ln(l+k). Substituting a and b in the solution (26) of

Theorem 2 gives

l+ku - (l+k) v . (69)

Figure 1 gives examples of such functions, which only depend on the

"interaction" parameter k in the multiplicative model. In the liter-

ature k typically is foumd to lie somewhere between -. 95 and -. 1 (see

Keeney and Raiffa, 1976). For such negative values h is concave,

which is interpreted as risk aversion in value. For k - -1 the risk

aversion increases, i.e., the function becomes more concave. For

k - 0 the fuinction approaches u - v, which corresponds to the result

that for k - 0 u goes over into the additive model. For k > 0 the

function h becomes convex with increasing convexity (risk proneness)

as k gets larger.

The range between 0 and 1 is of particular interest for ana-

lyzing the curvature of h, since typically both u and v would be

standardized by selecting x° as the worst alternative and x1 as the

best. Figure 2 shows a blowup of Figure 1 in the local range between

0 and 1. For k values between -. 5 and +1 the functional relationship

between u and v is almost linear, but for k - -. 99 concavity

(risk aversion) is substantial, and for k = 50 convexity (risk proneness)

is significant.

I.

%4

I

rrw r vr ~r...



24

Insert Figures and 2 about here

In the case where u is additive and v is multiplicative the

above standardization conventions cannot be used since v > 0 everywhere.

However, applying the same conventions to u and defining v(x ° ) = 1

and v(x 1 ) = e gives the convenient solutions a = 1 and b = 0. Using

these values in (52), the solution of Theorem 3 gives

u = ln v. (70)

When both u and v are multiplicative, standardizations are con-

strained by the fact that (l+ku) and v must obtain zero values at iden-

tical points. This fixes a point of u as a function of v and makes it

necessary to standardize separately for the cases where k is positive

and where k is negative. If k is positive, the following conventions

will be used: u(x ) = 0, v(x ) = 1; u(x ) = 1, v(x ) = e. These are

the same conventions used above, but there is an additional restriction:

x must not be a natural zero point (i.e., a zero multiplier), and for

o 1 o o
any zero multiplier z , x >_ x - z . These conventions give solutions

b = 1 and a = ln(l+k). Consequently the solution (67) of Theorem 4 re-

duces to

l+ku = (sgn v)iv l (+k), k > (71)

I,
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FIGURE 1

GLOBAL PROPERTIES OF FUNCTIONS RELATING u AND v IF u IS

MULTIPLICATIVE AND v IS ADDITIVE (Standardization conventions as in text).
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FIGURE 2 2b

LOCAL PROPERTIES OF FUNCTION RELATING u AND v IF u IS

MULTIPLICATIVE and v IS ADDITIVE (Standardization conventions as in text)

(1+ku) =(1+k)v
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Figure 3 gives examples of this functional relationship which

again only depends on k. v - 0 is in an inflection point for all k,

and the positive and negative sides are mirror images up to a multi-

plicative transformation. This fact follows from the character of

negative multipliers which should maintain the essential properties

of the utility function in its negative and positive part. k = e - 1

gives the linear relationship. For larger 1; h is concave in negative

values of v and convex in positive ones. For smaller k this trend re-

verses. A final observation is the natural limit of the concavity of

h when k tends towards zero. The dotted line represents this limit,

which is in fact the function u - Inv, as would be predicted since u

becomes additive if k goes to zero.

Insert Figure 3 about here

Figure 4 gives again the blowup for the standard range of u between 0

and 1. Here it appears that k values between 1 and 5 tend to produce
/

close to linear functions.

Insert Figure 4 about here

When k is negative the following standardization conventions will

be used: u(x°) - 0, v(x 0 ) u -1; u(x ) = -1, v(x 1) -e. These are

similar to the conventions for positive k, but applied to the negative

ranges of u and v. Here the additional assumption must be made that x ]



FIGURE 3 2

GLOBAL PROPERTIES OF FUNCTIONS RELATING u AND v IS BOTH ARE

MULTIPLICATIVE (Standardization conventions for k > 0 as in text)
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FIGURE 4

LOCAL PROPERTIES OF FUNCTIONS RELATING u AND v IF BOTH ARE

MULTIPLICATIVE (Standardization conventions for k > 0 as in text)

1+ ku = (sgn v) jvj ln(1+k)
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is not a zero multiplier, and that for any zero multiplier z°

Z - X0 - xI. Using these standardization conventions, the solutions

for a and b are b - I and a - in (1-k). Substituting these solutions

into (53), the solution to Theorem 5 gives

1+ku = -(sgn v) vjIn(l 'k) k < 0 (72)

Figures 5 and 6 present examples of this functional relationship

both for the global range of u and v and the local range within the

standardized values. v - o is again an inflection point, and the

positive and negative segments are mirror images up to a multiplicative

transformation. In this case, however, h is convex (risk seeking) in

the negative values of k and concave (risk prone) in the positive values.

The local cwvature of h within the standardized range is close to

linear for most of the range of negative k's.

Insert Figures 5 and 6 about hereI

Behavioral and Applied Implications

Behavioral implications. To explore the behavioral meaning of the

mathematical results it is helpful to consider a simple comodity bun-

dle evaluation example. Let each X. denote a commodity with unit price

Pi. x - (x1 , x,..., xi,..., xn) is a commodity bundle with amounts

xi. The market price for such a bundle would be

n
p(x) = PX (73)

-"" *-" ". " " " "'-.'" "-. "- -'-;' " "" " ',, iit



FIGURE 5 31

GLOBAL PROPERTIES OF FUNCTIONS RELATING u AND v IF BOTH ARE

MULTIPLICATIVE (Standardization conventions for k < 0 as in text)
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FIGURE 6 32

LOCAL PROPERTIES OF FUNCTIONS RELATING u AND v IF BOTH ARE

MULTIPLICATIVE (Standardization conventions for k>O as in text)
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(73) is also a simple additive value model in which preferences for

(riskless) commodity bundles are dictated by their respective prices.

The implications of linear value functions vi , Pili and linear in-

difference curves are obvious.

Assuming that an analyst only knows that (73) is an appropri-

ate conjoint measurement value representation for some decision maker

and that the v. Neumann and Morgenstern utility function u is additive,

theorem 1 implies the strong results:

n
u(x) z iXi ,  (74)

u (x) PiXi.  (75)

That, of course, means that the decision maker is risk neutral.

To extend this line of argument to nonlinear value functions,

assie that all vi 's are marginally decreasing as described by a
logarithmic function

vi (xi ) ln xi , (76)

and that v is additive. Assuming again that u is additive implies

ui = ln x.. (77)

The single attribute utility functions in (77) appear risk averse, but ,9

risk aversion in this particular context means nothing more than marginally
.9

.9

N
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decreasing value. There is absolutely no element of the colloquial

notion of "avoiding to take chances" implied by the shape of the

ui's. On the contrary, I would consider a decision maker whose pre-

ferences follow (76) and (77) risk neutral in value.

This risk neutrality in value comes, in fact, as no surprise

considering the structural assumption behind the additivity of u.

This assumption, called the marginality assumption (Fishburn, 1965),

requires the decision maker to be indifferent among all gambles with

identical single attribute (marginal) probability distributions. To

illustrate, consider the following two gambles for comdity bundles:

GAMBLE 1 GAMBLE 2

HEADS TAILS HEADS TAILS

GASOLINE 16 G 0 0 16 G

GROUND BEEF l0 P 0 10 P 0

According to the marginality assumption these two gambles should be
indifferent. But an experimental study (v. Winteffeldt , 1979) revealed

that subjects generally prefer the right option, because it has more

balanced outcomes. Similar results were obtained by Delbeke and Fauville

(1974) and in applied studies (Keeney and Raiffa, 1976). This is, of

course, a form of risk aversion but to distinguish it from the usual

single attribute risk aversion it has been called multiattribute risk

aversion (see also Richard, 1975). The marginality assumption is there-

fore equivalent to multiattribute risk neutrality, and single attribute

risk neutrality in value. It does not, however, require linear utility

U

.1
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functions as example (77) shows.

Disentangling risk attitude from marginal value considerations be-
n

comes more interesting if we consider the riskless model v(x) - in xi
ix1

in comection with a multiplicative utility function. The standard-

ized form of Theorem 2 implies

n

l+ku(x) - (l+k) i-i zin xi . (78)

0
Setting all x x except for some i givesj j

l+kui (x i ) - (l+k) n xi. (79)

Now assume further than k - e-l, which yields

1 1
i --- xi -'-- (80)

which is a linear utility function. This example shows that it is

theoretically possible to have linear utility functions, not because

the decision maker is risk neutral, but because his risk proneness

compensates his marginal decreasing value function. The example also

shows that the marginality tests could conceivably be violated in

spite of linear utility functions. Or, in other words, a decision

maker may be multivariate risk averse (prone) in spite of single

attribute risk neutrality. Of course, this single attribute risk

neutrality would only be an appearance when u is multiplicative and

v is additive, since it my be based on strong risk aversion or prone-

ness in value.

* -..
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Miultiattribute risk aversion and proneness can be related to the

interaction parameter k in the multiplicative model (see Keeney and

Raiffa, 1976). If k < 0, the decision maker must be multiattribute risk

averse, i.e., he would prefer the more balanced gamble in the margin-

ality test. If k > 0, the decision maker must be multiattribute risk

prone, i.e., he would prefer the more imbalanced gamble in the margin-

ality test.

Theorems 3 and 4 do not contribute substantively to the behavior-

al umderstanding of riskless and risky evaluation phenomena. The case

where u is additive and v is multiplicative (in the non-genuine sense

of having no null =ms or sign reversals) appears to be very rare. In

fact, from a strictly measuement theoretic point of view it cannot hap-

pen at all, since additivity of u implies the existence of an additive

v. In the conjoint measunent sense a multiplicative v without null

zones or sign reversals is indistinguishable 'from an additive v. To main-

tain that v is multiplicative in such a case -requires a priori reasoning

which lies outside the arguments of conjoint measurement theory. For

example, in evaluating cars, the attributes safety and performance may

be considered multiplicative factors a priori, even if there are not

preference reversals or null multipliers in the attribute ranges under

consideration. Such multiplicative versions of a theoretically additive

conjoint measurement model may be preferable for face validity reasons.

Consider the case of a non-genuine multiplicative v where all vi ' s are P

exponential in the form vi (xi) - eXi, and where u is additive. By

Theorem 3

W S
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n

u -nx- Z x. (81)
i-l

(81) demostrates again the possibility of a linear utility fiction

with curvilinear value functions.

Genuinely multiplicative value and utility functions are very

rare and if they occur they are striking phenomena as Krantz et al

note (Krmtz et al, 1971). The behavioral interpretations for func-

tional relatimships betwoem u and v in this case are less clear than

in the previous cases. Assume that v is multiplicative in the form

n
v(x) * xi . (8Z)i-l1

If u is also multiplicative, the standardized solutions of Theorem

4 i m p l i e s +,

ui(xi ) - (sgnk) ( x1 Ixi l x I xk (83)

which is risk neutral if k - e - 1, risk prone in positive x. if

k > e-I and risk averse in positive x. if k <e-i. The negative x i's1 11

have the opposite risk attitude when compared with the positive x. 's.1

Applied implications. The main applied argument for using Theorems

1-4 is that v can be constructed with simpler methods than u. u can

be obtained from v on the basis of a priori reasoning about the ag-

gregation form of u and v, and on the basis of a few risky questions

to assess k.

*1

.... ]
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Why is v easier to construct than u? In (conjoint measurement)

theory a special sequence of indifference judgments is required to

construct v. This procedure is called "dual standard sequence" or

"lock step procedure" (see Krantz, et al, 1971 and Keeney and Raiffa,

1976). This procedure is not substantially simpler than the lottery

methods required to construct u: But simple rating and weighting

techniques, notably Edwards' SRT procedure (1977), can approximate

dual standard sequences, since this involves similar cognitive pro-

cesses. It would be much more difficult to justify a SMART approxi-

mation of u, since risk attitude and cognitive processes particular to

lottery methods are involved in the direct assessment of u.

Assuming that SMAR or some similar methods are fair or good

approximations of v, Theorem 1-4 provide a simple basis of transform-

ing v into u and of crosschecking the construction of value and util-

ity functions. If the considerations of Theorem 1 apply, SART can

be used directly to take expectations, since u - v. If the conditions

of Theorem 2 are met, the analyst has to assess the interaction

parameter k in addition to v. Often this can be done by a priori

reasoning about mltiattribute risk attitude (to determine the sign of

k) and by a few exploratory questims about the degree of multivariate

risk attitude (to determine the size of k). Sometimes translating v
I

into u may not even be worth the effort, e.g., if k is between -.5 and

+1. Figures 1 and 2 show that in such cases the exponential transform-

ations are almost linear, and expected utilities would be very difficult

to distinguish from expected values taken over v.
N
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Similar methods can be applied in the cases where the conditions

of Theorems 3 and 4 are met. In all cases it would be good practice

to construct both u and v and cross check their implications, when the

transformation of v is assessed.

This last argument leads up to a development of methods for per-

forming sensitivity analyses, based on Theorems 1-4. In particular,

these theorems give some simple deterministic boumds for modelling

errors, i.e., from using an additive SMART type model when the true

model is multiplicative. By now, the steps to perform such sensitivity

analysis should be obvious. Further experimental and numerical studies

of the fnmctional forms in the four theorems may prove useful for

applications of decision analysis.

N

I,

*1

I2

I-.- ',21



40

1. J. AZCEL, Lectures on Functional Eations and Their Appli-
cations, Academic Press, New York, 1966.

2. L. EELBEXE and J. FAUVILLE, "An Empirical Test of Fishburn's
Additivity Axiom," Acta Psychologica 38, 1-20 (1974).

3. J.S. DYER and R.K. SARIN, 'Measurable Mu ltiattribute Value
Functions," Discussion Paper No. 66, Management Science
Study Center, University of California, Los Angeles, 1977.

4. W. EDWARDS, ' %ow to Use Multiattribute Utility Measurement for
Social Decision Making," IM Transactions on System,
Man, and Cybenetics. 7, 326-340 (1977).

5. P.C. FISHBURN, Utility Theory for Decision Making, Wiley,
New York, 1970.

6. P.C. FISURN and R.L. KEENEY, "Generalized Utility Independence
and Same Implications", Operations Research 23, 928-940 (1974).

7. R.L. KEENE and H. RAIFFA, Decisions with Multiple Objectives:
Preferences and Value Tradeoffs, Wiley, New York, 1976.

8. D.H. KRANTZ and A. TVELW, "Conjoint-Measurement Analysis of
Composition Rules in Psychology," Psychological Review 78,
151-169 (1970).

9. D.H., KRANTZ, R.D., LUCE, P. SUPPES, and A. TVERSKY, Fomdations
of Measuremett, Vol. I, Academic Press, New York,71.

10. J. VON NEULANN and 0. IMJRSTERN, Theory of Games and Economic
Behavior, 2nd ed., Princeton University Press, Princeton,
NJ., 147.

II. R.A. POLLAK, "Additive von Neummm and Morgenstern Utility
Functions." Ecmnmetrica 35, 485-494 (1967).

12. H. RAIFFA, '"Preferences for Multi-Attributed Alternatives,"
Memorandum No. 5868, The Rand Corporation, Santa Monica, 1969.

13. S.F. RICHARD, "%Mltivariate Risk Aversion, Utility Independence,
and Separable Utility Functions," Management Science 22,
12-21 (1975).

14. L.J. SAVAGE, The Foundations of Statistics, Wiley, New York, 1954.

15. D. v.WINTERFELDT, "Additivity and Expected Utility in Risky Multi-
attribute Preferences," submitted to Journal of Mathematical .
Psychology, 1979.

11

4.



SICURIT fYP ( d Or THIS PAGE IWh.n Pat. En€red)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE CO!.1"LFTJNG FORM
I. REPORT NUMOUER |2. GOVT ACCESSION NO. 3. RECIPIENT°S CATALOG NUMBiR

001595 _

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD :OVERED

Functional Relationships Between Risky and Technical

Riskless Multiattribute Utility Functions 1ER/ORIN 12 R/17NUMBER

79 - 3
7. AUTHORYS)& A. CONTRACT OR GRANT NUMBER(S)Det of von Winterfeldt

N00014-79-C-0038

9. PERFORMING ORGAI41ZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Social Science Research Institute AREA 6 Y.ORK UNIT NUMBERS

University of Southern California
Los Angeles, CA 90007 __

1I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research - Dept. of Navy December, 1979
800 N. Quincy Street 13. NUMOER OF F AGES

Arlington, VA 22217 34
14. MONITORING AGEI.CY NAME b ADDRESS(if diflorent from Controllnf Office) 15. SECURITY CLASS. (of ti treport)

Office of Naval Research
Research Branch Office unclassified
1030 East Green Street ISo. DEC;LSSIICAIION,'DoffGRA.D

Pasadena, CA 91101 SCiIEDUI..E

16, DISTRIBUTION STATEME41 (of this Report)

Approval for public release, distribution unlimited

17. OISTRIBUTIOl STATEMENT (of the abateact entered in Block 20, It diflerent from Report)

IM. SUPPLEMNTARY NOTES

19. KEY W'ORDS (Continue on revsr . side if necessary and identftly by Licck number)

conjoint measurement theory additive & multiplicative utility functi(
expected utility theory value functions

functional equations
risky and riskless utility functions

20. AeSTRACT (Continue on reverse oide It neceesry and Identify by blocct number)

Expected utility theory and conjoint measurement theory form two major classes
of models and assessment procedures to construct multiattribute utility functions.
In conjoint measurement theory a value function v is constructed which preserves ]
preferences among riskless multiattributed outcomes. The risky utility function
u, constructed in the framework of expected utility theory, also preserves such
riskless preferences. In addition, u is an appropriate guide for decisions under
uncertainty since its expectation preserves risky preferences among gambles.

D )oAN73 1473 EDITION OF I NOV G5 IS OBSOLETE
S/N 0102"014"6601

SECURITY CLASSIFICATION OF THIS PAGE (W*en Date ilflr¢d)

*I4



unclassified
SECuRITY CLASSIFICATION OF TIS PAGE(Whn Data Ente ed)

Since both u and v are order preserving functions, they must be related by
a strictly increasing transformation. However, u and v need not coincide
or be related through any special functional forms, unless some simple
decomposition forms are assumed. More restricted functional relationships
obtain, if u and v are assumed to be either additive or multiplicative.
In particular, u can be shown to be linearily, logarithmically, or
exponentially related to v, depending on which function is additive and
which is multiplicative. The paper proves such functional relationships
based on the theory of functional equations, and techniques are described
to assess the parameters of these functions. The results are discussed
from a behavioral standpoint of interpretating the form and shape of
multiattribute utility functions and from a practical standpoint of
simplifying multiattribute utility assessment.

SECURITY CLASSIFICATION OF THIS PAGEfU, en Dots Entered,
. *" " !',," m* • .............................................. ..........% - , .. ,•."...... ... '.-'. .- ". .- "- .- "- .,,f'.;* \r*,, , ,:-;': :",',.: .,, ,.:,. ,',, , , . - . - : :._-. -;".-. - . , -. . - ; . . .



CONTRACT DISTRIBUTION LIST
(Unclassified Technical Repcrts)

Director 2 covies
Advanced Research Projects Agency
Attention: Prozr am Management Office
1400 'ilson Boulevard
Arlington., Virginia 22209

Office of Naval Research 3 ccnies
Attention: Code 455
800 North Quincy Street

Alnt on, Vi r z 4 n -a22217

Defense Dcc'.nentation Center 12 cftnZes
-ttenti'cn: DDC-TC '

Cam~eron Station 0A
Uexn~raVirginia 223L

DOASMA-i- Baltim-cre Office I Cony
Attention: Mr. K. Gerasir.
300 East JoDpa Road
Towson, Maryliand 21204.

Director 6 copies
Naval. Research Laboratory
Attention': Code 2627
Washington, D.C. 20375

Olt

1 .1 11 11 !10 11111, 111



-- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ u .&7 RJ Win. Mpmp nan U-na as 3%nmf rS a a .. S a r .nS *lunaAS U. na.3 ~ S~1 W ." wim 1

Revised Auzust 1978

SUPLEK-ENTAL DISTRIBUTION LIST

(Unclassified Technical Reports)

De:)ar--ent of Defense Chairmar, Dera: fn o:Curriculu~z
Develcpment

Director of Net Assessment National W6ar Co"--ege
Cf-fic e of the Secretarv of Defense F t. Moa - th and 'D Streets, S-W
Attenticzn: MAU Roberz G. Cough, US.IF Washington, DC 20319
The ?e-noacon, Roo= 3A930
Wash-inzzon, DC ?0301 Defense 1Thtellicence cc'-cc!

Attention: ? r'c -s-'r 73ocas .rc'te
s .:Director (Net ehiclAssessment) W;as*.inaT,,on, DC 207

Office cof :-.e Der--ov ciroto'o Defense
-eer' and Engine e:U-.g (T7est and Vce Directc!r fotcc

.ne -e:mzor., Room X12 Defense:nc ce en.
was -:n-.::n, DC 20301 -.0cmr 7-E - - Z, . C

vast.-inzzcn, DC
Directzor, Defense !dvanced Research

___cos Agency Cor-za7.d and Ccn-.-c - ec*-n-iaI Cent=e:
-.400, Wilson Boulevard DefenseCozn.cars
Arlington, VA 22 209 Attention: Mr. John D. Fwang

Washington, DC 20301
'Director, Cvbernetics Technolo~v Office
Defense Advanced Research Projects Agency De--artment o: the Navv
'LOG ;WIson Boulevard
Arlington, VA 22Z209 Office of the Chief of Naval OrErao-Ilns

(OP-951)
Director, ARTA Regional Office (Europe) Washingtonr, D)C 20, 5-
Heaccquarters, U.S. European Co~anc dsa-
A20 'e- Yorkr 09128 O,-- ie cf.. va

Asssta..tCief for 7ec-

Director, k?2.- Regional Offi-ce (Pacific) 8CC DC. ~re
C:;*-S Lr , Bo 13 Alnt~

H. -.. Srzit, 'a: 96L ::o f',a :~n'

ze :,7 F ES A.

.'c.: S 5: P Z - E



Office of Naval Research Superintenden:

Operations Research Programs (Code 434) Naval ?cstzraduate Schcol

800 North Quincy Street Attention. R. Z. Rcand, (Code 52')

Arlington, VA 22217 C3  .icu

Monterey, CA 93940

Office of vlaval Research
information Systems Program (Code 437) Naval Persannel Research and Develooent
800 North Quincy Street Center (Code 35)
Arlington, VA 22217 Attention: R C 'ar

San Diese, CI c2152

Director, 07 Branch Office
Attenticn: Dr. Charles Davis Na.-" Personnel esearch. and Develcpment

536 South Clark Street Center

Chicago, IL 60605 Manned Svste-s Desizn (Code 311)
Attention: Dr. Fred ucker

Directcr, ON? Branch Office San Die z. CA 92152

Attention: Dr. J. Lester
-.93 Su--er Street ..a. a-------------------Cen-er

Boston, V 02210 -an a7.. N

D.rect=, ON7 3r-anc Office
Attention: Dr. E. Gcve Yava i l:zinen: fencer

1:0: :as- 2 t-e-. treer -rain Ana'.s S an-

?a-e- CA 911-06 (Code
At tentic . A ..re T. Snde

Zirector, O\ Branch Office Oran ,

Attention: Mr. R. Lawson

1030 East Green Street Director, Center for Advanced Research

Pasadena, CA 91106 Naval War Colege
Attention: Professor C. Levis

Office of Nava! Research Newpcrt, RI 02S,.

Scientific Liaison GrouD
Attention: Dr. M.. Bertin Naval Research Laboratcr"

American Embassv - Root A-407 Ccm-unications Sciences Divisicn (Code 54(

AO San ranciscC 96503 Attention: Dr. John Shore
Washington, DC 20375

Dr. A. L. Slafkosk';
Scientific Advisor Dean of the Academic Deoartzents

Ccr=andant of the Marine Cor-s (Code PD-!) U.S. Naval Academy
• -s.. n...n. - ... Annaocis ' I

nea::.ar:ers, "Na.'a2. = Materia. Co~and ::.aJ .n:.lliee ..

:31 Y a D e - -7

At t
en

t in: Dr. -:e-er G. Mcore Ouanticc, V l

Z-n= ..- esearcn Admirnistratlon Derartne~t c: te A-~

--------- szraua . ?zh Yc! . - -.
. -. c~.t Z. : - a r c t  - ', - .. . , " - .. SUrl r : h .-~2 C " 3

-,e:= :=7, Cf 7, Z$ 1 "



D-:ector, Art-y Librarys Denzar=-en c: -the Ai7 ForCE

The 'Pentagon, Roc- L5J4 Assistan~t :cr Recu,:re~en:s Develc:~e't
-ashungco, DC 20310. and Accu si-tcn. Frcga=.s

Office of t*he De: utv Chi-ef c-- Staff --c7
U.S. A~y Research Institute Researc- and Develo~mn
Organizations and Svstes Research Laboratory The Pentagon, --co-.7 4C.-2
Attention: Dr. Edgar M. Jchnson Aashingtcn, DC 20330
5 0 02. E7 s e rn *c -w e z !v e n u e S c e - f R S a C. ex a n C:ri'a, VA 22333 kir 7crce Offce c- Sce::cRsach

Lfe Sciences Dfrectcrate
Director, Organizations and Systems Buldn : ci1irn

Research Laboratorv Washing ton, DC 20332
U..A=~ :n-stitute for th'e Belhavioral cmnat
an. Social Sciences ko-a.a~t Ai r.vri.

M~ex:~ra, A 22-33

ec-~zz:irect~ . ~ ~ CcertsHum~an En :-er±-c:x-s

E 5a, 2

ca e'se. z-ents Ccnz-and 2etrekF:oc:
Car:-lsle 3arr:ac'kS ? 17013 At tenticn: !Ma-r R. -

a .- l Logistics !Manaze--e, Center as:tr.:c 0'0
Att.ention: DRY-S-SCAD (ORSA)
F:. Lee, V1. 23801 Director, A-:vanced Sstz-n _ Dvisi-

(AT-iR:"'As)
~ear-~ oEninern~Attention: Dr. .lcrcn 7:*-,strE.c

'~t~States Military Academy r~t?~esnAB .
AttZ:Entin: COL A%-- F . Grur-

Pc'-., o:t, NY 10996 -Commanc-e7, 'sone AirDvec47et~.ne

-.. tet cn M7 cn~AP
~i roo ne-rfsfnsatlve

Wa:7 C-one, Ne 1.o-e

-:- --- , -ne -

f.S td e s a-.7 Anal sifs fic e
--- 7ars :a n 7~. an' .-----

- -- - - - - - - - - - - - - - - - - - - - -

C 7..S 7 .e S Ea 7 -0fiC e

a 7

' 277

V. . . -W



Other Th-vernment Agecies Safac -~est

Attenr:on: Dr. R. A.. wc .ard
C*hiLef, Strategic Evaluation Center Stanford, C4 C4~3C5
Central intellizence Agency

EedcarerRoom 2G24~ Director, Attli14ed ?sy-clcogy 'Lnlt
Aasnington, DC 20505 Medical Researc- Council'

Attenticn: Dr. A. D. 'Bad'delev
Director, Center for the Sti&.- of 15 Chaucer 'soad

Intel ligence Ca~bridge, CB 2E
Central Inte2Jigence Aeencv. England
Azzenticn: Mr. Dean Moor
Was'nington, DC 20505 Dep)artmEnt: CfPSV C 1 C.ZV

Br-unel Un:ivers t v
Xr. Richard 'Heuer Attention: Dr. La-wrence D. .hiili~s
Yethcc~s & Forecasting Division 711_rn7c*Ze, Y -',ddesex -,'BE K
C-ffi-c e o f Reg icma I and Poli1tical Anal,,,sis England1
Cent7al 1z.eM 4giernce Agency

Wa:.igcrD" 20505 Decisicn Analv~s -c

Ofic c Li-fe Scien~ces A4.tZ:e ntc 7r..... fe E 7 "1 C Er
...atesNat:ioa ecna'ic and M-enlc C!:: C.A 12f

nt :rt 7: r.Stanl1ey Deutsch Decisicn ' esEarc
CC:-e enec venue 1201 Oak Streez

Was*hin:-gto-., DC 2C546 Euzene, OR ? 7 0

Depa7t=E-n c_' ?svrcc-c
Other 7nS:t'-.it:ons -a vr s tv orf Wa s- n. zt cn

Attention: Dr. Lee Rev Beach.
De-arrmen: of ?s vch o 1o g Seattle, W 89

ne c*ns *-op_-ns University
Attenti on: Dr. Aiihonse Chapamis Depart~ent of 7ElectricaL and Co=outer
C:-arles and 34th Streets tn~ineering
Raltimre, C 27'118 University o f Michigan

Attenticn: Professor Kan C*-e-
trstcr e c Deen se Analy-.-s es Ann Arbor, 1 -1

en n: _esse Crlanskv
.. e De? a7rt.en t c-- Cc".erre n a n c' c:t:c s

Attentror.: -.r. D - .. -- zSC7C rW

-- :c~:-.er- CLfr~

*.'E 7ee Ti..EvrrS

Atenti- r*~

-7--w

* V R %WV %j!6'4..x*r.*%1* W*.



Professor Ray-mond Tanter
Polizical Science Department
'Te U--iversi t' - f Michigan
A-n Arbor, MI 48109

Professor Howard Raiffa
Morgan 302
Harvard Business School
Harvard University
Cambridge, .{' 02163

Depar:nen: of Psychology
University of Oklahoma
A-:ention: Dr. Charles Gettys
455 'es: Lindsey
Dale 'Hall Tower
Ncrzaa, OK 73069

I-.:i:U-e Cf Behaviora. Science #3
University cf Colorado

A:t-nziz-: Dr. Keneth aond

5C.: er, Co7o-radC 80109

Decisfcns and Designs, Tncoroorated

Suite 600, 8400 W'estpark Drive
P.O. Box 907
McLean, Virginia 2101

I
,I



M7I


